Determine the horizontal and vertical components of reaction at the pin A and the reaction of the rocker B on the beam.

**Solution:**

Show me the final answerâ†“

Let us first draw a free body diagram showing all the forces affecting the beam. Remember that since the beam is in equilibrium, all forces added must equal 0.

We can first solve for N_B by writing a moment equation at point A.

\circlearrowleft^+ \Sigma M_A=0;

N_B\text{cos}\,(30^0)(8)-4(6)=0

N_B=3.464kN

N_B\text{cos}\,(30^0)(8)-4(6)=0

N_B=3.464kN

Now, we can write an equation along the x-axis like so:

\rightarrow^+\Sigma F_x=0;

A_x-3.464\text{sin}\,(30^0)=0

A_x=1.732 kN

A_x-3.464\text{sin}\,(30^0)=0

A_x=1.732 kN

Next, we can write another equation along the y-axis:

\uparrow^+\Sigma F_y=0;

A_y+3.464\text{cos}\,(30^0)-4=0

A_y=1 kN

A_y+3.464\text{cos}\,(30^0)-4=0

A_y=1 kN

**Final Answers:**

A_x=1.73 kN

A_y=1.00 kN

N_B=3.46kN

A_y=1.00 kN

N_B=3.46kN